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Abstract: Research Highlights: Our results suggest that weather is a primary driver of resource
orders over the course of extended attack efforts on large fires. Incident Management Teams (IMTs)
synthesize information about weather, fuels, and order resources based on expected fire growth
rather than simply reacting to observed fire growth. Background and Objectives: Weather conditions
are a well-known determinant of fire behavior and are likely to become more erratic under climate
change. Yet, there is little empirical evidence demonstrating how IMTs respond to observed or
expected weather conditions. An understanding of weather-driven resource ordering patterns may
aid in resource prepositioning as well as forecasting suppression costs. Our primary objective is to
understand how changing weather conditions influence resource ordering patterns. Our secondary
objective is to test how an additional risk factor, evacuation, as well as a constructed risk metric
combining fire growth and evacuation, influences resource ordering. Materials and Methods: We
compile a novel dataset on over 1100 wildfires in the western US from 2007–2013, integrating data
on resource requests, detailed weather conditions, fuel and landscape characteristics, values at risk,
fire behavior, and IMT expectations about future fire behavior and values at risk. We develop a
two-step regression framework to investigate the extent to which IMTs respond to realized or expected
weather-driven fire behavior and risks. Results: We find that IMTs’ expectations about future fire
growth are influenced by observed weather and that these expectations influence resource ordering
patterns. IMTs order nearly twice as many resources when weather conditions are expected to
drive growth events in the near future. However, we find little evidence that our other risk metrics
influence resource ordering behavior (all else being equal). Conclusion: Our analysis shows that
incident management teams are generally forward-looking and respond to expected rather than
recently observed weather-driven fire behavior. These results may have important implications for
forecasting resource needs and costs in a changing climate.

Keywords: resource ordering; weather; risk; evacuation; fire growth; incident management teams

1. Introduction

Extreme, erratic, and unpredictable are all words used to describe the behavior of some of
the most devastating fires in recent decades. Extreme wildfire events in Chile, Portugal, Australia,
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Canada, and the USA, among other locations, have exceeded control capacity and resulted in high
costs and losses, providing context and justification for research into weather, risk, and suppression
decisions [1]. Weather is always a critical factor during a wildland fire response effort. While fire and
atmospheric scientists have gained a better understanding of how weather influences fire behavior
(e.g., [2–5]), less is known about how fire management personnel respond to variable weather, and how
it affects their requests for suppression resources. Do fire managers request resources in anticipation
of weather-driven growth events, or do they wait to see if the consequences materialize? Does the
presence of values at risk make fire managers more forward-looking? The answers to these questions
are critically important to understand how scarce and expensive suppression resources are used.

The objective of this study is to understand how fire managers respond to weather- and
value-driven fire risk. We analyze suppression resource ordering patterns to determine whether fire
managers order resources in anticipation of weather conditions expected to drive fire growth or react
to conditions once realized. We develop a two-step approach wherein we estimate the effect of weather
conditions on observed wildfire growth and expected near term fire growth; then, we estimate the effect
of observed and expected wildfire growth on suppression resource orders. This approach allows us to
identify the channel through which weather conditions impact resource orders. We then investigate
how this response to observed and expected fire growth depends on the presence of values at risk.

Our study relates to several strands in the literature on wildfire management, including
empirical analyses of factors influencing fireline production rates [6,7], suppression expenditures [8,9],
interregional sharing of firefighting resources [10,11], resource dispatching practices [12,13], managerial
risk preferences and perceptions [14–16], patterns of aerial suppression resource use [17–19], and
suppression effectiveness performance measures [20]. Some of this work has a direct and logical
connection to resource ordering, although none has examined how risk perceptions and preferences
influence the dynamics of resource ordering directly. For instance, in studies of strategic decision
making, [14] found that managers are more sensitive to risk to homes and watersheds than to cost
and personnel exposure, [15] found that managerial risk preferences are inconsistent with minimizing
expected economic loss, and [16] found that managers exhibit risk aversion and nonlinear probability
weighting. In all cases, however, choice experiments compared strategies only coarsely using variables
such as expenditures and personnel hours and did not address resource ordering.

Hand et al. [21] examined variation in resource use patterns across incident management teams
and found that after controlling for fire and landscape characteristics, 17 of 89 teams exhibited a daily
resource capacity that was significantly higher than the median team. Katuwal et al. [22] found that
the total fireline production capacity often exceeded the fire perimeter and that, on average, 21% of the
total productive capacity was retained after fires ceased growing. Bayham and Yoder [13] found that
fires threatening homes are dispatched more Type 1 Crews and Engines, which reduces the likelihood
that other simultaneously burning fires will receive requested resources. Belval et al. (in review) [23]
examined the metrics for quantifying resource use and scarcity on a national (rather than incident)
level for Type 1 crews and large airtankers, finding substantial differences between patterns of Type 1
crew and large airtanker usage and scarcity.

The current study differs in several important ways. First, we study resource requests rather than
dispatches. Resource dispatches are inherently more complex as the Geographic Area Coordination
Centers (GACC) and National Interagency Coordination Centers (NICC) make tradeoffs between risks
on multiple fires. A focus on resource requests allows us to investigate how variable weather conditions
influence fire managers’ preferred actions. Second, this study focuses on a fire manager’s forward-
and backward-looking response to risk. For an efficient fire suppression system that aims to create a
fireline to hold the fire within a specific area, we would expect to observe ordering preemptively of
fire weather that may cause quiescent fire behavior. However, fire suppression also has other goals:
protecting structures and other human values at risk. Ordering and assignment patterns may reflect
these goals as well. We investigate anticipatory resource ordering through the self-reported growth
potential variable and self-reported evacuation status. We show that current and future weather are
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significant drivers of observed fire growth and the growth potential rating. We then show that growth
potential and evacuation potential can be drivers of anticipatory resource ordering.

We make several contributions to the literature on wildfire management. First, we compile an
extensive dataset on resource orders, fire behavior, and conditions to study our proposed questions.
Second, we develop a novel two-step regression framework through which we are able to analyze
the impact of weather on resource ordering patterns. Third, we provide evidence that Incident
Management Teams (IMTs) order resources in anticipation of fire growth rather than simply reacting to
fire behavior as it occurs.

2. Materials and Methods

2.1. Conceptual Framework

When a wildland fire is discovered in the United States, a response is initiated using one of the
local dispatching centers. Most wildland fires (i.e., 95% to 98% of wildland fire ignitions) are contained
during this period of initial response [24,25]. The initial response to fires is typically standardized and
handled exclusively by local resources [26,27]. If a fire is not controlled during the initial response and
increases in size or complexity, then an Incident Management Team (IMT) is assigned and may begin to
order additional resources for the longer term. During small or less complex fires, the IMT may consist
of a single person (Incident Commander), while for larger fires IMTs may consist of up to 44 personnel,
including the Incident Commander, Safety Officers, Operations Section Chiefs, Air Operations Section
Chief, and many more (see Appendix D in the 2019 California Interagency Incident Management
Team Operating Guidelines). Such large fires often overwhelm the local area’s resources, necessitating
additional resources from other localities or national resources. Resources are requested by the leader
of the IMT (the incident commander) but on large fires may also be driven by the operations section of
the team. We refer to the decision makers as “IMTs” in this paper.

Over the course of a particular fire, fuels, and topography are usually known, but variable weather
conditions can lead to uncertain fire behavior. Expectations about future weather, fire behavior, and
values at risk influence resource ordering decisions. In addition, the values threatened by the fire (e.g.,
structures, infrastructure, cultural sites, watersheds, and critical habitat) and sociopolitical pressures
inform the manager’s needs. Risk management frameworks suggest that resources should be ordered
in anticipation of fire behavior and the threats that it poses. However, resource ordering patterns
may satisfy multiple managerial frameworks. Resource ordering patterns may anticipate weather
conditions that promote rapid fire growth or respond to growth events after they occur. Without
considering the values at risk, it is not clear if anticipatory or reactive ordering is desirable.

To orient our analysis, we begin by outlining a stylized framework to empirically test if resource
ordering patterns of large fires are dominated by anticipatory or reactive ordering (Table 1). First, we
define fire perimeter control and structure protection as our focal wildfire management objectives;
these are commonly identified in empirical and model-based fire suppression analyses (e.g., [28–31]).
We then craft risk-based metrics relating to anticipatory or reactive ordering. In the former case,
we consider fire growth potential and evacuation potential, and their interaction as a measure of
anticipated risk guiding proactive response. In the latter case, we consider fire growth and evacuation
initiation, and their interaction as a measure of observed risk guiding reactive response.

Table 1. Expected resource ordering behavior.

Fire Management Objective Anticipatory
(Forward-Looking)

Reactive
(Backward-Looking)

Perimeter Control Growth Potential Fire Growth
Structure Protection Evacuation Likely Evacuation Ongoing

Both Anticipated “Risk” Observed “Risk”
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It is useful to consider how weather-induced fire behavior and values-at-risk may influence
ordering dynamics, as summarized in Table 1. For a forward-looking manager, we expect positive
correlations between resource orders with all three variables (Growth Potential, Evacuation Likely,
Anticipated Risk). The relative magnitudes and statistical significance may vary depending upon
managerial preferences and conditions. If an evacuation is likely, we might expect orders for resources
that may be used to protect values-at-risk such as structure engines, hand crews, and aircraft for
support. Reactive resource ordering may involve similar ordering patterns but occur after the growth
event or evacuation, with a hope to quickly contain so as to avoid future risky growth events. We
construct regression models to test these hypotheses using high temporal resolution data.

2.2. Data

We compiled a novel dataset for this study, integrating data on fire behavior, suppression resource
requests, and environmental and landscape characteristics. The data on fire behavior and operational
challenges come from ICS-209 situation reports [32]. Suppression resource request data come from the
Resource Ordering and Status System (ROSS) [33]. Weather data come from gridMET [34] and [35].
Vegetation data come from Landfire and the National Land Cover Database [36]. Topographic data are
generated from a digital elevation model from Landfire. See Table 2 for a complete list of variables
extracted from each data source.

Table 2. Variable descriptions and source information of the compiled dataset.

Datasets

SIT Reports (ICS-209) Time-varying wildfire data [32]
ROSS Resource orders [33]

gridMET Direct weather measurements and indices [34]
Jolly Categorical Fire Behavior Index [35]

Landfire Vegetation and topographic data [36]

Variable Name Description and source

Resource
Suppression resource request counts by resource type {Type 1 Crew,
Type 2 Crew, Wildland Engine, Structure Engine, Dozer, VLAT, Type

2-4 Airtanker, Helicopter} (ROSS)

Growth Potential Subjective measure of future fire behavior {Low, Medium (baseline),
High, Extreme} (ICS box 39a)

Area Cumulative area burned (1000 acres) on day t

Growth Calculated as Areait −Areait−1

Evacuation Binary equal to 1 if an evacuation is ongoing

Evacuation Potential Binary equal to 1 if there is a potential for an evacuation in the future

Inaccessibility Subjective measure of access difficulty based on terrain {Low &
Medium (baseline), High, Extreme} (ICS box 39b)

BI Burning Index (gridMET)

ERC Energy Release Component (gridMET)

CFBX Categorical Fire Behavior Index (1-5) (Jolly)

Wind Average daily windspeed in miles per hour (gridMET)

Temperature Mean daily maximum temperature in Celsius (gridMET).

Relative Humidity Average daily relative humidity in percent (gridMET).

Precipitation Mean daily precipitation in millimeters (gridMET).

Day of Year Cosine transform of day of year based on report date (ICS box 1)

Year Categorical variable for each year (2007–2013).

GACC Geographic Coordination Area in which ignition occurs (all
excluding Southern, Eastern, and Alaska)

Cause Categorical indicating fire cause {Human (baseline), Lightning, N/A,
Under Investigation} (ICS box 8).
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The ICS-209 is the primary interagency large fire reporting (209 user guide, [37]). Different
agencies have varying criteria for when an ICS-209 report is required, but, generally, these reports are
submitted daily for large fires (> 100 acres in timber or > 300 acres in grass or brush), complex fires
(i.e., incident management teams assigned), or fires with multi-day commitments of national resources.
This form provides information on the current and anticipated fire behavior and growth potential,
current fire management goals, the state of the fire’s containment, and information regarding resource
use and needs (see Table 2 for variable descriptions). We use the set of ICS-209 forms to identify
a set of large fires on which we could test hypotheses regarding forward- and backward-looking
resource ordering patterns. We focus on large fires with long-term management plans, rather than
those contained during initial attack, in order to investigate the response to change weather conditions
as they evolve over the course of the fire. Thus, we built our dataset around a core set of ICS-209
single-incident fires (i.e., not multi-fire complexes) that occurred in the western US (excluding Alaska,
Southern, and Eastern GACCs) from 2007–2013 with three or more reports appearing in the ICS-209
archives. We limit the data to 2013 because changes to the ICS-209 implemented in 2014 removed the
question about growth potential.

We collect four variables from the ICS-209 forms: fire size, growth potential, terrain accessibility,
and evacuation status. Fire size is the area burned at the time and date of the ICS-209 report. We
calculate fire growth by subtracting fire size of the previous report (t− 1) from the current report (t).
Consequently, fire growth is an empirical measurement rather than an outcome derived from a fire
spread model. Each time an ICS-209 report is filed, the IMT assesses the fire’s resistance to control
along two dimensions: growth potential and terrain accessibility. Both variables take one of four
values: Extreme, High, Medium, Low, or Extreme (Extreme represents the highest resistance to control).
Growth potential provides us with a measurement of the IMTs perception of future fire behavior,
which we hypothesize will affect the resources an IMT chooses to order. We use Inaccessibility (terrain
accessibility) to control for the IMT’s perceived effectiveness of resources, which may also influence
resource requests. We use “Medium” as the reference level in the growth potential and inaccessibility
variables throughout our analysis.

The evacuation status on the fire is a coarse, but important, metric for assessing values at risk.
The ICS-209 allows the IMT to report one or more of the following four conditions: Evacuation in
progress, Potential future threat, No likely threat, and No evacuations imminent. We create a forward-
and backward-looking measure of risk based on the evacuation status. The forward-looking measure
is Evacuation Potential, a binary variable equal to one if there is a potential future threat of evacuation.
The backward-looking variable, Evacuation, is a binary equal to one if there is an evacuation in progress.

We use resource orders submitted to the Resource Ordering and Status System (ROSS). ROSS is
the primary database used to track orders and assignments of wildland fire suppression resources
on large fires and intraregional resource requests (i.e., requests for resources where the resource
must come from outside the home unit or a neighboring unit to respond to the incident) (https:
//famit.nwcg.gov/applications/ROSS). Designed for use by dispatchers, the ROSS is the most complete
source of standardized information regarding resource ordering in the US (see Belval et al. [23] for data
quality issues). The ICS-209 does contain information about resources committed to fires. However,
we focus on resource requests rather than assignments to avoid modeling the complex dispatching
decisions that determine which resources are sent to each fire (Bayham and Yoder, 2020). ROSS data
includes orders from IMTs that were unable to be filled due to a scarcity of resources, which provides
the most accurate information available on the preferences of the IMT. The data from ROSS includes
the type of resource ordered and the date the resource is ordered. We compiled the data for each fire
to obtain the total daily orders for eight categories of firefighting resources: Type 1 Crews, Type 2
Crews (which include Type 2IA Crews), Structure Engines (specified as Type 1-2 engines), Wildland
Engines (specified as Type 3-7 engines), Dozers, LAT (which include Very Large and Type 1 Airtankers),
Aircraft (specified as T2-4 airtankers and fixed-wing aircraft), and Helicopters (which include Type

https://famit.nwcg.gov/applications/ROSS
https://famit.nwcg.gov/applications/ROSS
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1-3 helicopters). We merge ROSS data with incident-level data using date and common identifiers
reported in the Fire Occurrence Database [38].

We use GIS to merge the fire and resource data with weather data measured or estimated near
the point of fire ignition on a specific date (Figure 1). Data on the maximum daily temperature, the
minimum daily humidity, the daily mean windspeed, precipitation, the Burning Index (BI), and the
Energy Release Component (ERC) are extracted from gridMET, a gridded (4km resolution) daily
product based on the Parameter-elevation Regressions on Independent Slopes Model (PRISM) and
augmented with data from the Remote Automated Weather Station (RAWS) network weather data
among others [34,39]. We also integrate the Categorical Fire Behavior Index (CFBX) [35]. The BI and
ERC are commonly used indices known to influence fire behavior. CFBX is a composite index that
translates BI and ERC into a discrete scale with values one through five, where one corresponds to
smoldering and five corresponds to extreme erratic fire behavior.
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Figure 1. Data processing diagram to illustrate how key variables and data sources are integrated to
produce the dataset used for analysis.

We also used GIS to merge detailed topographic and vegetation variables constructed from the area
within a 2 km radius of each fire ignition point (Figure 1). Within the buffer of each fire, we calculate
the area of 20 Existing Vegetation Type (EVT) subclasses and 17 National Land Cover Database (NLCD)
vegetation types. We use a digital elevation model to calculate several topographic statistics within
the same 2 km buffer around each fire ignition point. Topography and vegetation are well-studied
determinants of fire behavior. Our goal is to control for these factors in our regression rather than
to study their effects on fire growth, which have been documented in previous research (e.g., [8,40]).
Therefore, we calculate the principal components of the 104 topographic and vegetation variables (see
supplement for details). We include the top 20 principal components, which represent approximately
80% of the variation in all of the topographic and vegetation variables. While the regression coefficients
are difficult to interpret, principal components are ideal controls because they are orthogonal to each
other by construction, which minimizes multicollinearity in regression models [41].

We begin with a core set of 18,990 observations from 2348 unique fires in the western US from
2007–2013, and we limit the dataset based on several criteria. First, we remove weather outlier
observations identified as over 3 standard deviations (99.7 percentile) from the mean to mitigate
their influence in the regression models. We exclude observations where the fire is reported as 100%
contained to focus on the active phase of the fire, where resources would likely be ordered to control
growth and protect values at risk. Additionally, we limit the dataset to observations with strictly positive
growth in the analyses of fire growth and resource orders in order to focus on active phases of the fire.
We compare the variation in the datasets used in each of the regressions in the supplementary material.
All data processing scripts are available at https://github.com/jbayham/weather_risk_resource_orders.

The final dataset includes 3735 complete records on 1125 fires. Table 3 includes summary
statistics for the non-categorical variables in the dataset (see the supplementary material for additional
information). Figure 2 displays the location of each fire in the dataset with more complex incidents

https://github.com/jbayham/weather_risk_resource_orders
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indicated with larger, redder circles. The mean size of observations in the dataset is 14,870 acres, which
is large because larger fires have more observations and thus receive more weight in the summary
statistics. The largest fire in the data is the Wallow fire that started in AZ and burned 538,049 acres. The
maximum Area is less than the 538 thousand acres because the last few thousand acres burned after
the fire was considered 100% contained and thus the suppression effort can be considered over. The
largest growth event was on the La Brea fire in the Los Padres NF in 2009, where the fire reportedly
grew nearly 21,000 acres in an operational period. Wildland Engines are the most prevalent resource
requested on a fire followed by Aircraft. While the largest maximum request was for Structure Engines
(325 during the Station Fire, 2009), the mean request for Wildland Engines is larger on average (5.19).

Table 3. Summary Statistics of data used in all regressions.

Variable Mean Std. Dev. Min Max

Area (1000 acs.) 14.87 36.22 <1 532
Growth (1000 acs.) 1.65 2.92 <1 21

BI 58.87 13.98 26 103
ERC 71.63 13.11 25 113

Precipitation (mm) 0.40 1.37 0 13
Min Humidity (%) 16.53 8.14 1 57

Max Temperature (C) 26.86 5.88 4 45
Wind (mph) 7.92 2.80 2 18

Wildland Engines 5.19 17.49 0 318
Structure Engines 1.18 10.22 0 325

Dozers 0.65 2.83 0 65
Type 1 Crews 1.48 5.46 0 81
Type 2 Crews 0.66 1.84 0 27

LAT 0.13 0.68 0 12
Aircraft 2.23 3.88 0 31

Helicopters 0.82 1.56 0 19

Observations = 3735; Fires = 1125
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2.3. Empirical Models

We develop a set of regression models designed to test the hypotheses outlined in Section 2.1. Our
primary objective is to test whether IMTs look forward to expected fire behavior and risks or respond
to realized events. We approach the objective in two steps. First, we establish an empirical relationship
between weather conditions and observed fire growth. Similarly, we establish an empirical relationship
between weather and a subjective assessment of future fire behavior given the information available
today (growth potential). Second, we model the relationship between suppression resource orders
and both growth potential and lagged fire growth, and their interactions with evacuation. Step one
is intended to identify the components of weather that influence observed and expected fire growth
in order to connect an IMT’s resource ordering behavior to weather conditions via fire growth. The
final step investigates whether resource ordering appears to be forward- or backward-looking under
differing values at risk.

2.3.1. Weather and Observed Fire Growth

We developed a model of fire growth to demonstrate the influence of weather conditions on
realized fire growth. Fire growth, growthit, is the growth in the size of fire i at time t defined as the
difference between area burned at time t and area burned at time t− 1. We specify a generalized linear
regression model (quasi-Poisson) of fire growth as:

growthit = exp
(
W′it−1β+ f (Ait−1) + X′itφ+ C′iγ

)
(1)

where Wit−1 is a vector of lagged weather variables on fire i at time t, f (Ait−1) is a natural cubic spline
of lagged fire size, Xit is a vector of controls that vary over time, and Ci is a vector if time-invariant
controls. The weather vector includes the Energy Release Component (ERC), Burning Index (BI),
Severe Fire Weather Potential (CFBX), precipitation, the maximum daily temperature, the minimum
daily relative humidity, and the daily average wind speed. However, we estimate separate models for
measured weather and composite weather variables to mitigate the effects of multicollinearity. We use
lagged rather than contemporaneous weather since growth is calculated as the difference between size
at time t and time t− 1.

The time-varying controls, Xit, include Inaccessibility, cosine transforms of the day of year
interacted with GACC, and the burned area in the period t− 1. The natural cubic spline of fire size
captures features correlated with fire history, such as complexity. The time-invariant controls (that
vary across fires) include the cause of the fire, the GACC in which the fire burned, the year, and the set
of 20 topographic and vegetation principal components. We are primarily interested in the weather
coefficients, β, which we expect to confirm the well-documented effects of weather on fire behavior.

We estimate a quasi-Poisson model because fire growth is a strictly positive variable. The
quasi-Poisson model accounts for overdispersion, which makes the standard Poisson model inconsistent.
Finally, we cluster standard errors at the fire level so that our results are robust to serial correlation and
heteroskedasticity within a fire.

2.3.2. Weather and Growth Potential

We develop a model of growth potential to demonstrate how IMTs synthesize information about
current and expected weather conditions. Growth potential, gpit, is an ordered categorical variable
taking values j = {Low, Medium, High, Extreme} on date t of fire i. Therefore, we estimate the following
ordered logit regression,

Pr (gpit = j) = Pr
(
κ j−1 < W′itδ+ f (Ait−1) + X′itθ+ C′iµ+ uit < κ j

)
∀ j (2)

where Wit, Xit, Ait−1, and Ci are defined in Equation (1), uit is a logistically distributed error, and κ j are
a set of cut points that define the ranges corresponding to growth potential categories (Low, Medium,
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High, and Extreme). The goal of this model is to establish the relationship between observed weather
and expected fire behavior. Again, we cluster standard errors at the fire level so that our results are
robust to serial correlation and heteroskedasticity within a fire.

2.3.3. Resource Orders, Fire Growth, and Growth Potential

The last step of our analysis investigates the relationship between resource orders, realized fire
growth, and expected fire growth. We specify the following fixed effects model to estimate the number
of resources ordered by a fire:

resitr = gpitωr + EvacPitτr + growthit−1ηr + Evacit−1ψr + gpit ∗ EvacPitρr+

growthit−1 ∗ Evacit−1λr + f (Ait−1) + X′itΨr + Φi + πt + ICit + εit, ∀ r
(3)

where gpit is growth potential on fire i at time t, EvacPit is equal to 1 if there is a potential for evacuation
in the future, growthit−1 is observed fire growth in the previous period, and Evacit−1 is equal to 1 if there
is an ongoing evacuation in the previous period, f (Ait−1) is a natural cubic spline of lagged fire size,
Xit is a vector of controls that vary over time, Φi are fire fixed effects (fire-specific constants), πt are
time fixed effects (time-specific constants), and ICit are incident commander fixed effects. We adopt a
fixed-effects strategy to estimate the impact of past fire growth and growth potential on resource orders
to control for the many unobservable factors, beyond those captured by fire size, inaccessibility, and
seasonal variation within GACC, all of which influence the decision to request suppression resources.
These may include time and location-specific characteristics of the fire as well as social dynamics
between key personnel on the incident. IMTs may change over the course of the fire, and the fixed
effect captures heterogeneity in risk preferences and management style [21].

We include interactions of growth potential and evacuation potential as well as growth and
ongoing evacuations as measures of risk. We expect IMTs to respond differently to expected or observed
fire growth if there are values at risk. However, it is not clear a priori how exactly IMTs should respond
when the fire is resistant to control, and there are values at risk. On the one hand, more resources may
facilitate safe evacuation and protect life. On the other hand, engaging the fire with more resources
may put firefighters’ lives at risk.

We use lags of evacuation and fire growth to remove the potential for reverse causality. In principle,
lagged evacuation and fire growth are determined at time t when requests are made. We cluster
standard errors at the fire level so that our results are robust to serial correlation and heteroskedasticity
within a fire. The regressions are estimated in R and Stata statistical software [42,43]. The fixed effect
regressions are estimated using the fixest package in R [44].

3. Results

The results section will follow the two-step structure outlined in Section 2.3. First, we present
the results demonstrating the relationship between weather and observed fire growth and subjective
growth potential. Second, we present results connecting the observed fire growth and subjective
growth potential to suppression resource requests. Our results illustrate the pathway through which
realizations and expectations of uncertain weather impact suppression resource requests.

3.1. Weather, Fire Growth, and Growth Potential

The results of the quasi-Poisson regression suggest that weather conditions have a statistically
significant effect on observed fire growth. We estimated three models: (1) with direct weather
measurements (temperature, humidity, precipitation, and humidity), (2) with ERC and BI, and (3) with
CFBX. We estimate separate models of fire growth because the composite weather indices are highly
collinear with the direct weather measurements. We estimate the regressions with an expanded dataset
since there were more complete observations of the variables used in Equation (1). We compare the
summary statistics of the expanded dataset with those in Table 3 in the supplementary material to
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show that the additional observations improve the precision of the estimates. Standard errors are
clustered at the fire level and are robust to heteroscedasticity and serial correlation within a fire. Full
regression tables are available in Supplementary Table S2.

Figure 3 displays the marginal effects of select weather conditions on fire growth. For reference, the
mean fire growth is 1.65 (1000 acres). The results generally confirm the intuition that high temperature,
ERC, and CFBX increase fire growth while high humidity reduces fire growth. The figures indicate
that these effects are nonlinear with significantly larger fire growth occurring at the upper quartile of
ERC and temperature levels. The highest CFBX category, which is described as extreme and erratic
fire behavior, is correlated with higher levels of growth, while the lower two categories described as
smoldering, creeping, and spreading correspond to much lower levels of fire growth.Forests 2020, 11, x FOR PEER REVIEW 11 of 19 
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Figure 3. Predicted fire growth response to relevant weather conditions: (a) Energy Release Component,
(b) Categorical Fire Behavior Index, (c) Relative Humidity, and (d) Maximum Temperature. The black
lines represent the predicted fire growth, and the shaded area represents 95% confidence intervals from
the quasi-Poisson regression of fire growth on weather conditions. The red dashed lines are the mean
growth in the data (1.65 from Table 3). The small hash marks along the horizontal axis indicate the
density of observations.

Next, we investigated the relationship between weather conditions and expected fire behavior
using an ordered logit model. Again, we estimate two separate models for direct weather measurement
and composite indices. We cluster standard errors at the fire level to account for heteroscedasticity and
serial correlation within a fire. Full regression tables are available in Supplementary Table S3.

Figure 4 illustrates the predicted probabilities of growth potential categories as a function of the
ERC and Minimum Humidity. Panel (a) suggests that low growth potential is highly likely (probability
of 0.80) at low ERC levels. As ERC increases, IMTs become increasingly likely to report medium,
high, and extreme growth potential. When the ERC is 100, IMTs are most likely to report high growth
potential. In contrast, when humidity is low, IMTs are most likely to report high growth potential
(green line in panel (b)). As humidity rises, IMTs become increasingly likely to report low growth
potential. These results suggest that IMTs develop expectations about fire behavior based on current
and expected weather conditions. While we do not use data on forecasted weather, we have estimated
the model with forward lags of realized weather and find that the results are qualitatively similar.
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3.2. Suppression Resources, Fire Growth, and Growth Potential

The second step of our analysis investigates the relationship between observed fire growth and
growth potential on resource orders. First, we estimate a model of total resource requests under four
specifications to illustrate the interaction between weather-driven fire behavior and values at risk. We
then estimate separate regressions for each type of resource to investigate whether resource types
respond to weather differently based on their intended functions. Full regression tables are available in
Supplementary Tables S4 and S5.

Table 4 shows the results of four regressions, all with total resource requests as the dependent
variable. Standard errors are clustered at the fire and are robust to heteroscedasticity and serial
correlation within a fire in all specifications. Column 1 displays the results of the regression with
only growth potential and lagged growth with fire fixed effects. The results indicate that high growth
potential (high and extreme categories) leads to 10.58 more total resource requests relative to a growth
potential of medium. Similarly, low growth potential leads to 6.6 fewer requests relative to medium
growth potential. While the coefficient on lagged growth is positive, it is imprecisely estimated and
indistinguishable from 0 at an alpha = 0.05.

Table 4. Linear fixed effects regression of total resource requests.

(1) (2) (3) (4)

Growth Potential (High) 10.5795 *** (2.2232) 10.2399 *** (2.5257) 7.2662 *** (2.3789) 7.6294 ** (3.6203)
Growth Potential (Low) −6.601 ** (2.9824) −5.5504 ** (2.3694) −1.9734 (2.1306) 1.7124 (3.2106)

Lagged Growth 0.593 (0.4038) 0.3376 * (0.1903) 0.4589 ** (0.2102) 0.4447 (0.2921)
Potential Evacuation −0.1334 (3.3062) −1.3574 (3.2013) −1.0775 (4.3369)
Lagged Evacuation −1.1129 (3.594) −1.5337 (3.8048) −3.2708 (4.9227)

Growth Potential (High) × Pot. Evac. 0.488 (3.8585) 2.1315 (3.7043) −0.7307 (4.9029)
Growth Potential (Low) × Pot. Evac. −8.6827 (12.6131) −12.1008 (12.3487) −14.3315 (18.1677)

Lagged Growth × L. Evacuation 0.4107 (0.6001) 0.3392 (0.6056) 0.3819 (0.9442)

Fixed−Effects:
Fire Yes Yes Yes Yes

Days Since Discovery No No Yes Yes
Incident Commander No No No Yes

R2 0.580 0.581 0.623 0.765
Within R2 0.126 0.128 0.054 0.048

* p < 0.1; ** p < 0.05; *** p < 0.01; Observations: 3735; Fires: 1125; Number of days since discovery FE: 84; Number of
ICs: 1234; Medium Growth Potential is the omitted category. Interactions between variables are denoted with an x.
Omitted controls include: Inaccessibility, the day of the year * GACC, and a natural cubic spline of fire size.
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Column 2 shows the results of a similar model, but we have added potential evacuation and
lagged evacuation (ongoing evacuation reported in period t − 1) as well as their interactions with
growth potential and lagged growth, respectively. Growth potential remains a statistically significant
driver of resource requests. Lagged growth is now also statistically significant, indicating that an
additional 1000 acres of fire growth in the previous operational period increase resource requests by
0.34 resources. While the coefficients on the interaction terms are not statistically significant, the signs
indicate that an ongoing or potential evacuation exacerbates the response. Together, these results
provide support for our hypotheses that managers are forward- and backward-looking with regard
to perimeter control objectives (Table 1). Moreover, the stability of the growth potential coefficient
estimates in Columns (1) and (2) suggest that while potential evacuation and growth potential may be
correlated, it is not severe enough to substantially affect the growth potential coefficient estimates.

Columns 3 and 4 include the same regressors as Column 2, with additional fixed effects for the
time since fire discovery and the incident commander. These alternative specifications are intended
to assess the robustness of our estimates to additional control variables. The coefficient on high
growth potential remains statistically significant across all models, indicating a robust influence on
resource ordering. The coefficients on the other covariates do not remain statistically significant, casting
doubt on the robustness of the influence of lagged growth and interactions with evacuation status on
resource ordering.

The intention of our model is to estimate the causal impact of observed and expected growth as
well as evacuation on resource orders. While the coefficient estimates do not depend on model fit, we
present the overall and within R2 estimates. The overall R2 increases as more variables (or fixed effects)
are added to the model. The estimates range from 0.58 in Column 1 to 0.76 in Column 4, indicating
that our model explains between 58% and 76% of the variation in the total resources ordered. The
within R2 estimates provide information about the explanatory power of regressors net of the fixed
effects. The within R2 of Model 2 indicates that the parsimonious specification with only fire fixed
effects performs better than the models with time since discovery and IC fixed effects. These results
indicate that resource orders are difficult to model because they depend on the inherent complexity of
fire management.

We now estimate the specification in Column 2, Table 4, for each resource type individually to
investigate heterogeneity in the forward- and backward-looking ordering patterns. Tables 5 and 6
show the results of the individual resource regressions. High growth potential leads IMTs to request
more Wildland Engines, Type 1 Crews, Dozers, LAT, Aircraft, and Helicopters (High growth potential
estimates not statistically significant for Structure Engines and Type 2 Crews). The magnitude of
the estimates indicates that nearly twice as many resources are requested when growth potential is
high relative to the medium growth potential. For example, the coefficient estimate on Wildland
Engines is 4.73 (Table 5), whereas the unconditional mean in the sample is 5.19 (Table 3). Similarly,
we find robust evidence that low growth potential leads IMTs to request fewer resources relative to
the medium growth potential (not statistically significant for Wildland Engines, Type 1 Crews, and
Dozers). However, the magnitude of the low growth potential coefficients is smaller than the high
growth potential counterpart in most cases, indicating that the effect is asymmetric, with more weight
placed on high growth potential.

The coefficient estimates on the other variables are not consistent across resource types. There is
some limited evidence that IMTs order more resources in response to a Potential Evacuation, but the
magnitudes are relatively small. The estimates are statistically significant for Wildland Engines, Type
2 Crews, Aircraft, and Helicopters. Moreover, only the coefficient on the interaction between high
Growth Potential and Potential Evacuation is statistically significant in the Type 2 Crew model. These
results provide limited evidence that IMTs respond to our constructed measure of risk.
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Table 5. Linear fixed effect regression of select suppression resources.

Wildland Engines Structure Engines Type 1 Crews Type 2 Crews

Growth Potential (High) 4.7291 *** (1.2993) 0.6385 (0.6829) 1.4889 *** (0.4261) 0.216 (0.1377)
Growth Potential (Low) −1.6283 (1.1496) −1.2824 * (0.7419) −0.5578 (0.4137) −0.1922 ** (0.0973)

Lagged Growth 0.3424 (1.7795) 0.215 (0.8521) −0.2072 (0.6257) −0.2593 (0.1712)
Potential Evacuation 0.1789 * (0.1012) −0.0128 (0.0529) 0.039 (0.0305) 0.0266 ** (0.0133)
Lagged Evacuation −0.9957 (2.1646) 0.2496 (1.152) −0.4623 (0.6051) 0.2156 (0.2102)

Growth Potential (High) × Pot. Evac. 0.0566 (2.1386) −0.3236 (1.0192) 0.3658 (0.6758) 0.5029 ** (0.2375)
Growth Potential (Low) × Pot. Evac. −4.2669 (6.0111) −3.7647 (4.7297) −0.6825 (1.4989) 0.5224 (0.399)

Lagged Growth × L. Evacuation 0.1994 (0.3822) 0.0112 (0.0937) 0.135 (0.1182) −0.0068 (0.0252)

Fixed-Effects:
Fire Yes Yes Yes Yes

R2 0.49577 0.46379 0.5019 0.3285
Within R2 0.08948 0.02522 0.08185 0.05616

* p < 0.1; ** p < 0.05; *** p < 0.01; Observations: 3735; Fires: 1125; Number of days since discovery FE: 84; Number of
IMTs: 1234; Medium Growth Potential is the omitted category. Interactions between variables are denoted with an x.
Omitted controls include: Inaccessibility, the day of the year * GACC, and a natural cubic spline of fire size.

Table 6. Linear fixed effect regression of select suppression resources.

LAT Aircraft Helicopters Dozers

Growth Potential (High) 0.1248 *** (0.0392) 1.9236 *** (0.3373) 0.5449 *** (0.1322) 0.5739 ** (0.2379)
Growth Potential (Low) −0.1286 ** (0.0596) −1.2483 *** (0.3465) −0.2537 ** (0.1256) −0.259 (0.1977)

Lagged Growth 0.0123 (0.0566) −0.0139 (0.4454) −0.0819 (0.1736) −0.1409 (0.2494)
Potential Evacuation −0.0011 (0.003) 0.0669 ** (0.0336) 0.0259 ** (0.0119) 0.0142 (0.0171)
Lagged Evacuation −0.0133 (0.0487) 0.4844 (0.3392) −0.1368 (0.1582) −0.4544 (0.3481)

Growth Potential (High) × Pot. Evac. 0.0001(0.0687) −0.1609 (0.4953) −0.0279 (0.207) 0.0748 (0.291)
Growth Potential (Low) × Pot. Evac. 0.0231 (0.1141) 0.3449 (0.8261) 0.1262 (0.3358) −0.9853 (0.9743)

Lagged Growth × L. Evacuation 0.01 (0.0069) 0.0147 (0.0398) 0.0111 (0.0162) 0.036 (0.0535)

Fixed-Effects:
Fire Yes Yes Yes Yes

R2 0.62267 0.63442 0.48125 0.44901
Within R2 0.02399 0.17992 0.12463 0.07102

* p < 0.1; ** p < 0.05; *** p < 0.01; Observations: 3735; Fires: 1125; Number of days since discovery FE: 84; Number of
ICs: 1234; Medium Growth Potential is the omitted category. Interactions between variables are denoted with an x.
Omitted controls include: Inaccessibility, the day of the year * GACC, and a natural cubic spline of fire size.

4. Discussion

We find robust evidence supporting the view that weather conditions influence observed and
expected fire behavior and that IMTs are generally forward-looking when ordering resources. Direct
measures of the weather and weather indices have statistically significant impacts on fire growth, a
finding that is consistent with prior literature—warmer, dryer, and windier conditions increase growth,
while cooler, wetter, and calmers conditions mitigate growth [5,39]. Our model of growth potential
indicates that IMTs internalize current and forecasted weather to form expectations about future fire
activity. Our model of resource orders shows that IMTs respond predominantly to expectations about
future fire activity rather than recently observed growth events. Together these results suggest that
IMTs appear to be more forward-looking rather than backward-looking.

While our regression models are estimated separately, we can combine the results to draw
inferences about how weather influences resource ordering. The first step in our modeling process
establishes the relationship between measured weather or weather index and observed growth and
growth potential. The results in Figure 4a show how the ERC relates to the probability that IMTs report
different growth potential categories. For example, at ERC = 0, the probability of an IMT reporting
high growth potential (green line) is approximately 0.10 (10%) and increases nonlinearly until the
probability is nearly 0.40 at ERC = 100. The growth potential probabilities can be mapped through
the regression results in Table 4 to estimate how the ERC will ultimately impact resource orders. The
predicted number of resources ordered on a fire with medium growth potential (assuming mean values
for all other regressors) is 3.87. As the ERC increases, the probability of high growth potential increases,
which can be multiplied by the high growth potential coefficient in Table 4 (10.24). Using the example
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from above, the probability of high growth potential is 0.40 at ERC = 100, which increases total resource
orders by 4.96 (0.40*10.24). We also need to account for the probability of low growth, which decreases
orders by 1.22 (0.22*(−5.55)). The net increase in resource orders at ERC = 100 is 3.74 (4.96–1.22).

We find little evidence to support our hypotheses regarding structure protection objectives and
our constructed metric for risk, which is defined as the interaction between observed or potential
evacuation and observed or expected growth. We expected to find that resources adept at structure
protection would be requested more often in the event that an evacuation was necessary. However, we
only found evidence of more requests for Wildland Engines, Type 2 Crews, Aircraft, and Helicopters
when there is a potential for evacuation. The combined risk (growth potential and potential evacuation
interaction) is significant in the Type 2 Crew model only. These results may simply reflect the large
variation in an IMT’s use and perception of resource availability and abilities [21,45]. In addition, our
risk metric may be an incomplete measure of the full set of values at risk, which may influence resource
ordering patterns. The metric may be conflating the need for structure protection with the role of
coordination and the use of different resources as emergency responders [46]. Future research may
focus on developing a more precise quantitative measure of risk factors that influence resource requests.

The R2 estimates in Tables 4–6 suggest that the models only explain up to 70% of the variation in
total resource orders, which implies that 30% or more variation is unexplained. This result is consistent
with Simpson et al. [47] who find that resources are used in various ways throughout the suppression
effort. While we limit the dataset to focus on the phase of active suppression, it is likely that a complex
array of factors beyond those captured in our regression model influences ordering patterns [48,49].

Fire growth and values at risk are not independent. Valued assets are at risk of damage if the fire
is expected to grow to such an extent that the asset is exposed to fire. This dependence of values at risk
on fire growth makes it difficult to statistically distinguish between the effect of fire growth and the
values at risk. We attempt to parse out these effects by treating evacuation as a modifier on observed
or expected fire growth. However, our results do not provide strong evidence that values at risk (as
measured by evacuation) dramatically change the importance of responding to expected fire growth.
Future analyses may consider a spatiotemporal measure of values at risk, such as homes within some
buffer of the daily fire perimeter.

Our analysis captures a likely pathway through which incident management teams translate
weather-driven expectations about fire behavior into resource orders. However, the variable growth
potential is limited to four categories, which may mask variation in response to certain condition
combinations. For instance, high winds may promote fire growth, but they may also limit the ability
to use aircraft resources. An IMT may request fewer aircraft resources during high wind events. On
the other hand, IMTs may request an aircraft so that they are prepared once the wind subsides. Our
consistently significant estimates on growth potential suggest that the IMTs request more resources
regardless of the factors driving higher fire activity.

While our results suggest that IMTs order resources based on expected fire growth, we do not know
how the resources are used or whether they were effective in achieving their objective. While simulation
models provide a framework through which one is able to analyze cost-efficient and effective responses,
crucial model parameters are collected from lab experiments, which may or may not reflect actual
conditions faced during a suppression effort. Analysts need highly resolved spatiotemporal data on
fire behavior and suppression activity in order to estimate effectiveness parameters. Current legislative
mandates may standardize the use of tracking equipment, which may provide this information on
future fires. These data have the potential to mitigate firefighter safety risks and develop a better
understanding of the drivers of resource use over the course of the fire. The results of our analysis
complement efforts to quantify suppression effectiveness by characterizing the linkage between variable
weather conditions and resource ordering patterns.
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5. Conclusions

We develop a two-step regression framework to estimate the pathways through which
weather effects resource ordering patterns. We find robust evidence that incident commanders
are forward-looking and order resources in response to expected weather-driven fire growth events as
opposed to simply reacting to the observed conditions and fire behavior. Incident commanders order
nearly twice as many resources when they expect high fire growth potential. These results suggest that
incident commanders may be trying to manage weather risk in a highly complex environment.

The results of this analysis have practical applications and policy implications. Our analysis
highlights the significant role that variable weather plays in resource ordering behavior. Our results
could be coupled with weather forecasts to estimate demands on the stock of wildfire suppression
resources. Moreover, fire size, damage, and complexity are expected to increase under future climate
scenarios, placing additional strain on suppression resources [39,50]. Beyond the trends of rising
temperatures and drying fuels, short-term weather events are expected to drive erratic and challenging
fire conditions. Our analysis provides a framework through which one is able to understand how
future weather variability may impact resource demands
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